ОГЛАВЛЕНИЕ

Предисло	рвие к 3-му изданию	4
Предисло	овие ко 2-му изданию	5
Предисло	овие к 1-му изданию	6
Список с	окращений и условных обозначений	8
Введение		10
Глава 1.	Эколого-гигиенические проблемы атмосферного воздуха.	45
Глава 2.	Эколого-гигиенические проблемы гидросферы и водоснабжения	94
Глава 3.	Эколого-гигиенические проблемы почвы и очистка населенных мест	122
Глава 4.	Эколого-гигиенические проблемы населенных мест и жилищ	143
Глава 5.	Эколого-гигиенические проблемы питания населения	184
Глава 6.	Основы гигиены и физиологии труда	306
Глава 7.	Основы радиационной гигиены	370
Глава 8.	Гигиена медицинских организаций	391
Глава 9.	Личная гигиена и здоровый образ жизни	434
Глава 10.	Основы гигиены детей и подростков	472
Нормати	вные документы, использованные в учебнике	504

Глава 1

ЭКОЛОГО-ГИГИЕНИЧЕСКИЕ ПРОБЛЕМЫ АТМОСФЕРНОГО ВОЗДУХА

1.1. ГИГИЕНИЧЕСКИЕ ПРОБЛЕМЫ ВОЗДУШНОЙ СРЕДЫ

Атмосфера — огромный воздушный океан, окружающий планету со всех сторон в виде оболочки размером в четверть земного радиуса, которая абсолютно необходима для существования живых организмов.

Атмосфера состоит из тропосферы, стратосферы, мезосферы, термосферы, ионосферы, экзосферы и магнитосферы.

К земной поверхности прилегает *тропосфера*— наиболее плотный слой воздуха размером 7—10 км на полюсах и 16—18 км — над экватором. В тропосфере происходит непрерывное перемешивание слоев воздуха по горизонтали и по вертикали, что приводит к понижению температуры воздуха с высотой. Здесь сосредоточено около 75% всей массы атмосферного воздуха, основное количество паров воды и пылевых частиц, способствующих образованию облаков. В этой связи тропосферу нередко называют «кухней погоды», и свойства этого атмосферного слоя оказывают наибольшее влияние на биологические объекты.

Следующий слой — *стратосфера* простирается вверх еще на 40 км. Он характеризуется разреженностью воздуха, незначительным содержанием водяных паров и отсутствием пыли. Под влиянием космического и коротковолнового УФ-излучения Солнца происходит ионизация молекул газов воздуха, особенно кислорода, вследствие чего образуются молекулы озона, создающие озоновый слой атмосферы толщиной всего в несколько миллиметров. Однако биологическая роль его чрезвычайно велика, о чем будет сказано дальше.

Над стратосферой находится еще более разреженный слой воздуха — *мезосфера*, простирающаяся на высоту до 80 км.

Термосфера — слой атмосферы над мезосферой от высоты 80−90 км, температура в котором растет до высот 200−300 км, где достигает значений порядка 1500 °K (Кельвина), после чего остается почти постоянной до больших высот (1 °K=1 °C).

Далее идет слой ионизированного воздуха — *ионосфера*, размеры которой зависят от времени года и суток, составляя от 500 до 1000 км.

Выше него последовательно размещаются экзосфера (до 3000 км) и магнитосфера (от 3000 до 50 000 км) — верхняя граница земной атмосферы.

Развитие космонавтики, успешно начатое человечеством в середине прошлого столетия, потребовало изучения влияния свойств и этих, очень удаленных слоев атмосферы, на состояние здоровья космонавтов для возможности их жизнеобеспечения в таких экстремальных условиях.

Известно, что человек может обходиться без воздуха в *среднем 5 мин*, после чего организм неизбежно погибает. Это свидетельствует о том, что воздух — жизненно важный фактор среды его обитания.

Воздух необходим:

- для поддержания процессов дыхания живых организмов, снабжая их организм кислородом;
- ▶ теплообмена организма, обеспечивая отдачу тепла различными путями;
- доступа к поверхности Земли оптической части солнечного спектра (видимых, УФ- и инфракрасных лучей);
- ▶ задержки инфракрасного излучения Земли благодаря присутствию в атмосфере водяных паров, озона и углекислого газа;
- способности ориентироваться в окружающем пространстве с помощью восприятия органами чувств зрительных и слуховых сигналов окружающей среды.

В процессе длительного взаимодействия организма человека с воздушной средой появились адаптационные механизмы, нарушение которых из-за резких изменений нормальных свойств воздуха может привести к их срыву и развитию патологических состояний в виде нарушений со стороны здоровья и снижения работоспособности.

Следует различать: чистый атмосферный воздух; атмосферный воздух промышленных регионов; воздух помещений жилых и общественных зданий; воздух помещений промышленных предприятий.

Указанные виды воздуха отличаются друг от друга по составу и свойствам, а значит, и по влиянию на организм человека, в том числе негативному. В этой связи для их оздоровления требуются разные гигиенические мероприятия.

Воздух имеет физические, химические и механические свойства, которые могут оказывать как благоприятное, так и неблагоприятное воздействие на организм человека.

Физические свойства воздуха: атмосферное давление, температура, влажность, подвижность, электрическое состояние, солнечная радиация, радиоактивность и электромагнитные волны, а также факторы

малой интенсивности (ионизация воздуха, геомагнитное поле Земли, биоритмы).

От физических свойств воздуха зависят климат и погода.

Химические свойства: нормальный газовый состав воздуха и вредные газообразные примеси.

Механические свойства: наличие твердых частиц (пыль, зола, дым, сажа) и микроорганизмов.

1.1.1. Гигиеническое значение атмосферного давления

Воздух обладает весом и массой, равной пяти квадриллионам тонн (5×10^{15}) , создавая у поверхности Земли под влиянием гравитационного поля атмосферное, или барометрическое давление. С поднятием на высоту его величина уменьшается, а при опускании глубоко под землю или под воду повышается. И на поверхности Земли атмосферное давление непостоянно, неодинаково и неравномерно, что зависит от географических и метеорологических условий, времени года и суток.

На уровне моря, широте 45° при температуре 0 °C атмосферное давление составляет 760 мм рт.ст., или 1 атмосферу.

Кроме этих, наиболее употребляемых единиц измерения барометрического давления, существуют и другие: миллибары, паскали, торры.

При нормальных условиях атмосфера давит на 1 см² поверхности Земли с силой около 1 кг. Здоровый человек обычно это давление не ощущает благодаря тому, что атмосфера давит на него со всех сторон одинаково и уравновешивается изнутри, так как жидкости и газы в организме имеют одинаковую упругость с наружным воздухом.

Суточные колебания атмосферного давления у поверхности Земли обычно не превышают 4–5 мм рт.ст., а годовые — 20–30 мм рт.ст. Такие незначительные изменения давления здоровые люди практически не ощущают, но некоторые люди (метеопаты) реагируют даже на них: чувствуют боли в пораженных ревматизмом органах, в местах старых ран и переломов костей; появляются приступы заболевания у больных сердечными расстройствами; ухудшаются сон, настроение, появляется чувство страха у лиц с повышенной нервной возбудимостью. Поскольку выявить самостоятельное влияние небольших колебаний атмосферного давления на организм довольно трудно, его рассматривают как фактор, характеризующий состояние погоды в целом, оказывающей суммарное воздействие на организм. Понижение атмосферного давления предшествует пасмурной, дождливой погоде вследствие притока более теплого воздуха (циклон), а повышение предвещает сухую ясную погоду с сильным похолоданием зимой (антициклон).

Таблица 1.1. Физиологическое действие на человека дефицита кислорода на разных высотах

е Парциальное содержанию в воздухе Физиологическое действие содержанию в на уровне моря, %	159 «Индифферентная зона», физиологические сдвиги	141 18,00 отсутствуют	125 16,50 Имеются физиологические сдвиги: учащается	110 14,50 пульс, учащается и углубляется дыхание, ухудшается зрение и др., но организм человека при легкой физической работе может приспособиться — «зона полной работоспособности»	98 12,90 «Зона неполной работоспособности»: при	85 11,10 мышечной работе резко учащается пульс, появляются одышка, слабость, расстройство координации движений и функции органов чувств, эйфория, сменяющаяся усталостью и сонливостью	74 9,7 «Зона неработоспособности»: кислородное	65 8,5 голодание не позволяет выполнять значительную физическую и умственную работу, угроза потери сознания	56 7,4 С этой высоты начинается «смертельная зона» для
Парциальное давление, мм рт.ст.	159	141	125	110	86	85	74	65	26
Атмосферное давление, мм рт.ст.	092	674	969	526	462	405	354	310	267
Высота, км	0	-	2	ಣ	4	5	9		80

В определенных условиях жизни и трудовой деятельности человека могут наблюдаться значительные отклонения атмосферного давления, как в сторону понижения, так и повышения.

Влияние пониженного атмосферного давления. Атмосферное давление понижается с подъемом на высоту. Влияние этого фактора на организм человек может испытывать при полетах на самолетах, восхождении на горы, космических полетах. Основной отрицательный фактор в этих условиях — сопутствующее падению атмосферного давления понижение парциального давления кислорода — того давления, которое имел бы газ в газовой смеси, если бы он один занимал весь ее объем.

Действие недостатка кислорода на организм человека в зависимости от высоты представлено в табл. 1.1.

Данные табл. 1.1 показывают, что, начиная с высоты 2,5-3,0 км, у человека может развиться *горная* или *высотная болезны* с соответствующими симптомами, приведенными в таблице.

Меры профилактики горной и высотной болезней.

- Тренировки в барокамере с пониженным атмосферным давлением.
- ▶ Применение кислородных приборов при подъеме на высоту свыше 3 км (у летчиков — с 2,5 км).
- Герметизация кабин самолетов и космических кораблей.

Влияние повышенного атмосферного давления. Повышенное давление атмосферного воздуха имеет место в определенных производственных условиях, вследствие чего влияние этого фактора будет детально рассмотрено в главе 6.

1.1.2. Гигиеническое значение температуры воздуха

Атмосферный воздух пропускает солнечные лучи, часть которых, достигая поверхности Земли, отражается (альбедо), а другая поглощается почвой, превращаясь в тепловую энергию, и воздух нагревается от теплового излучения Земли. В этой связи минимальная температура воздуха наблюдается перед восходом Солнца, а максимальная — между 13 и 15 ч, когда почва прогрета сильнее всего. По мере удаления от поверхности почвы температура воздуха понижается в среднем на 0,6 °С на каждые 100 м подъема. Распределение тепла на планете зависит и от ее шарообразной формы. По направлению от экватора к полюсам лучи Солнца падают под более острым углом, и Земля прогревается меньше. В этой связи максимальные температуры наблюдаются в районе экватора (+55 °С, а минимальные — в Антарктиде, -80 °С).

Близость территорий к морям, аккумулирующим тепло, обусловливая их более мягкий климат, делает суточные и сезонные колебания