Аннотация: Основы машинного обучения для аналитического прогнозирования: алгоритмы, рабочие примеры и тематические исследования
Машинное обучение часто используется для построения прогностических моделей путем извлечения шаблонов из больших наборов данных. Эти модели используются в приложениях для прогнозирования данных, включая прогнозирование цен, оценку риска, прогнозирование поведения клиентов и классификацию документов. Этот вводный учебник предлагает подробное и целенаправленное рассмотрение наиболее важных подходов к компьютерному обучению, используемых в интеллектуальном анализе данных, охватывающих как теоретические концепции, так и практические приложения. Формальный математический материал дополняется пояснительными примерами, а примеры исследований иллюстрируют применение этих моделей в более широком контексте бизнеса. После обсуждения перехода от подготовки данных до понимания решения в книге описываются четыре подхода к компьютерному обучению: информационное обучение, обучение на основе сходства, вероятностное обучение и обучение на основе ошибок. Описанию каждого из этих подходов предшествует объяснение основополагающей концепции, за которой следуют математические модели и алгоритмы, иллюстрированные подробными рабочими примерами. Наконец, в книге рассматриваются методы оценки моделей прогнозирования и предлагаются два тематических исследования, которые описывают конкретные проекты анализа данных на каждом этапе разработки, начиная от формулирования бизнес-задачи и заканчивая реализацией аналитического решения. Книга является результатом многолетней работы авторов в области машинного обучения и интеллектуального анализа данных и подходит для использования студентами в области информатики, инженерии, математики или статистики, аспирантами, специализирующимися в областях, связанных с интеллектуальным анализом данных, а также профессионалами в качестве справочника.Издательство | Диалектика |
Автор/составитель | Келлехер Джон Д.;Мак-Нейми Брайан;д'Арси Аоифе |
Год выпуска | 2019 |
Кол-во страниц | 656 |
ISBN | 978-5-6040044-9-4 |
Обложка | Пер |
Вес | 992г |
Формат | 17 x 25 cm |
Возрастная категория | 16+ |
Бесплатная Доставка по Европе (EU)*
*Для заказов свыше 40, - евро Подробнее
Основы машинного обучения для аналитического прогнозирования: алгоритмы, рабочие примеры и тематические исследования
-27%- Производитель: Диалектика
- Модель: TEEI8899670
- ISBN: 978-5-6040044-9-4
- Наличие: Есть в наличии
-
71.68€ 52.33€
Нашли этот товар по более низкой цене?
Во-первых - Вы молодец!
Во-первых - Вы молодец!
Просим Вас сообщить нам:

